A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion

نویسندگان

  • James Martin
  • Lucas C. Wilcox
  • Carsten Burstedde
  • Omar Ghattas
چکیده

We address the solution of large-scale statistical inverse problems in the framework of Bayesian inference. The Markov chain Monte Carlo (MCMC) method is the most popular approach for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. MCMC methods face two central difficulties when applied to large-scale inverse problems: first, the forward models (typically in the form of partial differential equations) that map uncertain parameters to observable quantities make the evaluation of the probability density at any point in parameter space very expensive; and second, the high-dimensional parameter spaces that arise upon discretization of infinite-dimensional parameter fields make the exploration of the probability density function prohibitive. The challenge for MCMC methods is to construct proposal functions that simultaneously provide a good approximation of the target density while being inexpensive to manipulate. Here we present a so-called Stochastic Newton method in which MCMC is accelerated by constructing and sampling from a proposal density that builds a local Gaussian approximation based on local gradient and Hessian (of the log posterior) information. Thus, the method exploits tools (adjoint-based gradients and Hessians) that have been instrumental for fast (often mesh-independent) solution of deterministic inverse problems. Hessian manipulations (inverse, square root) are made tractable by a low-rank approximation that exploits the compact nature of the data misfit operator. This is analogous to a reduced model of the parameter-to-observable map. The method is applied to the Bayesian solution of an inverse medium problem governed by 1D seismic wave propagation. We compare the Stochastic Newton method with a reference black box MCMC method as well as a gradient-based Langevin MCMC method, and observe at least two orders of magnitude improvement in convergence for problems with up to 65 parameters. Numerical evidence suggests that a 1025 parameter problem converges at the same rate as the 65 parameter problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

Non-linear stochastic inversion of 2D gravity data using evolution strategy (ES)

In the current work, a 2D non-linear inverse problem of gravity data is solved using the evolution strategies (ES) to find the thickness of a sedimentary layer in a deep-water situation where a thick sedimentary layer usually exists. Such problems are widely encountered in the early stages of petroleum explorations where potential field data are used to find an initial estimate of the basin geo...

متن کامل

3D Frequency-Domain Seismic Inversion with Controlled Sloppiness

Seismic waveform inversion aims at obtaining detailed estimates of subsurface medium parameters, such as the spatial distribution of soundspeed, from multi-experiment seismic data. A formulation of this inverse problem in the frequency-domain leads to an optimization problem constrained by a Helmholtz equation with many right-hand-sides. Application of this technique to industry-scale problem f...

متن کامل

A new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework

Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...

متن کامل

Stochastic conjugate gradient method for least-square seismic inversion problems

With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion and least square migration. However, though more advanced than conventional methods, these data fitting methods can be very expensive in terms of computational cost. Recently, vario...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012